(Escrevente/TJ/SP/VUNESP/2014) Norberto tomou dois empréstimos, que foram
pagos após 2 meses com o acréscimo de juro simples. No primeiro, de certo
valor, a taxa de juros foi de 1% ao mês. No segundo, de valor R$ 1.600,00 maior
que o do primeiro, a taxa de juros foi de 1,5% ao mês. Sabendo que a soma dos
juros pagos nos dois empréstimos foi igual a R$ 128,00, é correto afirmar que a
soma dos valores desses dois empréstimos é igual a
(A) R$ 4.800,00. (B) R$ 4.000,00. (C) R$ 3.200,00. (D) R$
4.600,00. (E) R$ 3.600,00.
Solução: 1)
Capital 1 = x; taxa 1 = 1% a.m. e prazo 1 = 2 meses.
Temos que o juro do
primeiro empréstimo é dado por J1 = x . 1/100 . 2 → 2x/100 reais;
2) Capital 2 = (x +
1600); taxa 2 = 1,5% a.m. e prazo 2 = 2 meses.
Logo, J2 =
(x + 1600) . 1,5/100 . 2 → (x + 1600) . 3/100 reais;
3) Como a soma dos juros é 128 reais, vem: 2x/100 + 3(x + 1600)/100 = 128 →
2x + 3x + 4800 = 12800
→ 5x = 8000 → x = 1600 reais.
4) O capital 2 é 1600 + 1600 = 3200 reais e a
soma de ambos os empréstimos, 1600 + 3200 = 4800 reais.
GABARITO: A
(Escrevente/TJ/SP/VUNESP/2014) Certa empresa produz diariamente quantidades
iguais do produto P. Se essa empresa usar três medidas iguais do componente A
em cada unidade do produto final P, serão necessárias 480 dessas medidas para
suprir a produção de P durante 2 dias. Se passar a usar 2,5 medidas de A em
cada unidade de P, o número de medidas de A necessário para suprir a produção
de P, durante 5 dias, será igual a
(A) 1050. (B) 1000. (C) 1220. (D) 980. (E) 1140
Solução: 1) 1 unidade de P → 3 medidas do componente A
480 medidas → 480 : 3
= 160 unidades de P → 2 dias
480 medidas → 160 : 2
= 80 unidades de P → 1 dia
O objetivo é continuar
produzindo 80 unidades de P por dia, dessa vez com 2,5 medidas de A.
2) 1 unidade de P → 2,5 unidades de A
80 unidades de P → 80
x 2,5 = 200 unidades de A → 1 dia
200 x 5 = 1000
unidades de A → 5 dias.
GABARITO: B
(Escrevente/TJ/SP/VUNESP/2014) Considere um reservatório com o formato de um
paralelepípedo reto retângulo, com 2 m de comprimento e 1,5 m de largura,
inicialmente vazio. A válvula de entrada de água no reservatório foi aberta por
certo período, e, assim, a altura do nível da água no reservatório atingiu 50
cm, preenchendo 40% da sua capacidade total. Desse modo, é correto afirmar que
a medida da altura desse reservatório, em metros, é igual a
(A) 1,75. (B) 1,25. (C) 1,65. (D) 1,50. (E) 1,35.
Solução: 1)
Nível da água: 50 cm = 0,5 m;
2) Volume d’água: 2 x 1,5 x 0,5 = 1,5 metro cúbico, o que
corresponde a 40% do volume total do reservatório;
3) Logo, 10% do volume total é 1,5 : 4 = 0,375
metro cúbico e o volume total, 100%, é 0,375 x 10 = 37,5 metros cúbicos.
4) Sendo x a altura procurada, temos que V =
37,5 → 2 . 1,5 . x = 37,5 → x = 1,25 m
GABARITO: B
(Escrevente/TJ/SP/VUNESP/2014) Considere
a afirmação: “Se passei no exame, então estudei muito e não fiquei nervoso”. Do
ponto de vista lógico, uma afirmação equivalente a essa é:
(A) Se estudei muito, então não fiquei nervoso e passei no
exame.
(B) Se passei no exame, então não estudei muito e fiquei nervoso.
(C) Passei no exame porque quem estuda muito só pode passar.
(D) Se não fiquei nervoso, então passei no exame ou estudei muito.
(E) Se fiquei nervoso ou não estudei muito, então não passei no exame.
(B) Se passei no exame, então não estudei muito e fiquei nervoso.
(C) Passei no exame porque quem estuda muito só pode passar.
(D) Se não fiquei nervoso, então passei no exame ou estudei muito.
(E) Se fiquei nervoso ou não estudei muito, então não passei no exame.
Solução: Sabemos que o condicional p → q é equivalente
a ~q → ~p, sendo ~p e ~q as negações de p e q, respectivamente.
O antecedente do
condicional, p, é “passei no exame”. Sua
negação é “não passei no exame”.
O consequente, q, é “estudei
muito E não fiquei nervoso”. Note que se
trata de uma conjunção. Sua negação é “não
estudei muito OU fiquei nervoso”.
Logo, a equivalência
pedida é “Se não estudei muito ou fiquei nervoso, então não passei no exame”.
GABARITO: E
(Escrevente/TJ/SP/VUNESP/2014) Considere verdadeiras as afirmações:
• Todos os cães latem.
• Todos os cães possuem quatro patas.
• Os gatos também possuem quatro patas.
• Alguns seres humanos imitam os latidos dos cães.
• Nem todos os cães mordem e alguns gatos arranham.
• Todos os cães possuem quatro patas.
• Os gatos também possuem quatro patas.
• Alguns seres humanos imitam os latidos dos cães.
• Nem todos os cães mordem e alguns gatos arranham.
A partir dessas afirmações, pode-se concluir, corretamente,
que
(A) alguns seres humanos imitam os miados dos gatos.
(B) os gatos que arranham assustam os cães que não mordem.
(C) os cães que latem possuem quatro patas.
(D) ou os gatos arranham ou os gatos miam.
(E) alguns cães não possuem quatro patas e não latem.
(A) alguns seres humanos imitam os miados dos gatos.
(B) os gatos que arranham assustam os cães que não mordem.
(C) os cães que latem possuem quatro patas.
(D) ou os gatos arranham ou os gatos miam.
(E) alguns cães não possuem quatro patas e não latem.
Solução: A única alternativa que contém uma afirmação
coerente com os dados é a letra C.
GABARITO: C
Nenhum comentário:
Postar um comentário